Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Biol Macromol ; 268(Pt 1): 131493, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608983

RESUMO

Chitosan (CTS), has emerged as a highly intriguing biopolymer with widespread applications, drawing significant attention in various fields ranging from medicinal to chemosensing. Key characteristics of chitosan include solubility, biocompatibility, biodegradability and reactivity, making it versatile in numerous sectors. Several derivatives have been documented for their diverse therapeutic properties, such as antibacterial, antifungal, anti-diabetic, anti-inflammatory, anticancer and antioxidant activities. Furthermore, these compounds serve as highly sensitive and selective chemosensor for the detection of various analytes such as heavy metal ions, anions and various other species in agricultural, environmental and biological matrixes. CTS derivatives interacting with these species and give analytical signals. In this review, we embark on an exploration of the latest advancements in CTS-based materials, emphasizing their noteworthy contributions to medicinal chemistry spanning the years from 2021 to 2023. The intrinsic biological and physiological properties of CTS make it an ideal platform for designing materials that interact seamlessly with biological systems. The review also explores the utilization of chitosan-based materials for the development of colorimetric and fluorimetric chemosensors capable of detecting metal ions, anions and various other species, contributing to advancements in environmental monitoring, healthcare diagnostics, and industrial processes.

2.
Pathol Res Pract ; 256: 155260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493726

RESUMO

Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-ß signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-ß regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-ß signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-ß receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-ß pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-ß signalling.


Assuntos
Arsênio , Poluentes Ambientais , Neoplasias Pulmonares , Metais Pesados , Humanos , Cádmio/análise , Arsênio/toxicidade , Arsênio/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Ecossistema , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Pulmão/metabolismo
3.
Pathol Res Pract ; 256: 155259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503004

RESUMO

Circular RNAs (circRNAs) have been recognized as key components in the intricate regulatory network of the KRAS pathway across various cancers. The KRAS pathway, a central signalling cascade crucial in tumorigenesis, has gained substantial emphasis as a possible therapeutic target. CircRNAs, a subgroup of non-coding RNAs known for their closed circular arrangement, play diverse roles in gene regulation, contributing to the intricate landscape of cancer biology. This review consolidates existing knowledge on circRNAs within the framework of the KRAS pathway, emphasizing their multifaceted functions in cancer progression. Notable circRNAs, such as Circ_GLG1 and circITGA7, have been identified as pivotal regulators in colorectal cancer (CRC), influencing KRAS expression and the Ras signaling pathway. Aside from their significance in gene regulation, circRNAs contribute to immune evasion, apoptosis, and drug tolerance within KRAS-driven cancers, adding complexity to the intricate interplay. While our comprehension of circRNAs in the KRAS pathway is evolving, challenges such as the diverse landscape of KRAS mutant tumors and the necessity for synergistic combination therapies persist. Integrating cutting-edge technologies, including deep learning-based prediction methods, holds the potential for unveiling disease-associated circRNAs and identifying novel therapeutic targets. Sustained research efforts are crucial to comprehensively unravel the molecular mechanisms governing the intricate interplay between circRNAs and the KRAS pathway, offering insights that could potentially revolutionize cancer diagnostics and treatment strategies.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA Circular/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias/genética , Processos Neoplásicos
4.
Pathol Res Pract ; 256: 155257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537524

RESUMO

Circular RNAs (circRNAs) constitute a recently identified category of closed continuous loop RNA transcripts, serving as a subset of competing endogenous RNAs (ceRNAs) with the capacity to modulate genes by acting as microRNA sponges. In the context of cancer growth, numerous investigations have explored the potential functions of circRNAs, revealing their diverse functions either as oncogenes, promoting cancer progression, or as tumor suppressors, mitigating disease development. Among these, circRNA ADAM9 (Circ-ADAM9) is now recognized as an important player in a variety of mechanisms, both physiological and pathological, especially in cancer. The aberrant expression of Circ-ADAM9 has been observed across multiple human malignancies, implying a significant involvement in tumorigenesis. This comprehensive review aims to synthesize recent findings elucidating the function of Circ-ADAM9 in many malignancies. Additionally, the review explores the possibility of Circ-ADAM9 as a valuable biomarker, offering insights into its prognostic, diagnostic, and therapeutic implications. By summarizing the latest discoveries in this field, the review contributes to our understanding of the multifaceted contribution of Circ-ADAM9 in tumor biology and its potential applications in clinical settings.


Assuntos
MicroRNAs , Neoplasias , Humanos , RNA Circular/genética , Neoplasias/genética , MicroRNAs/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Proteínas de Membrana/genética , Proteínas ADAM
5.
J Biomol Struct Dyn ; : 1-15, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486457

RESUMO

The Japanese encephalitis virus, (JEV), is a flavivirus mostly transmitted by Culex mosquitoes mostly present in Southeast Asia and the Western Pacific region. Ardeid-wading birds are the natural reservoir of JEV; nonetheless, pigs are frequently a key amplifying host during epidemics in human populations. Although more domestic animals and wildlife are JEV hosts, it is unclear how these animals fit into the ecology and epidemiology of the virus. Even though there is no specific therapy, vaccines are available to prevent this infection. However, current vaccinations do not work against every clinical isolate and can cause neurological problems in certain people. In this study, we have screened 501 phytochemical compounds from various plants from the Zingeberaceae family against the RdRp protein of JEV. Based on this, the top five compounds (IMPHY014466, IMPHY004928, IMPHY007097, IMPHY014179 and IMPHY005010) were selected based on the obtained docking scores, which was above -8.0 Kcal/mol. Further, the binding affinity of these selected ligands was also analysed using molecular interaction, and the presence of interactions like hydrogen bonds, hydrophobic bonds and polar bonds with respective active residues were identified and studied elaborately. Furthermore, the dynamic stability of the docked RdRp protein with these selected phytochemicals was studied using Molecular dynamic simulation and essential dynamics. The free energy landscape analysis also provided information about the energy transition responsible stability of the complex. The results obtained advocated phytochemical compounds from the zingeberaceae family for future experimental validation, as these compounds exhibited significant potential as JEV antagonists.Communicated by Ramaswamy H. Sarma.

6.
Int Immunopharmacol ; 132: 111957, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38554441

RESUMO

This study investigated the antioxidant, anticancer, antibacterial properties of Dioon rzedowskii extract, which had not been previously explored. We aimed to determine the extract's effect on liver and breast cancer cell lines and on solid Ehrlich carcinoma (SEC) mouse model to investigate the underlying molecular mechanisms. Three female albino mice groups were established: a tumor control group, a group treated with 100 mg/kg of the extract (D100), and a group treated with 200 mg/kg of the extract (D200) for 16 days after tumor development. Results showed that the D. rzedowskii extract inhibited cell growth in both MCF-7 and HepG2 cells in a concentration-dependent manner. This was achieved by suppressing the cell proliferation and inducing apoptosis. The extract also improved liver, heart, and kidney functions compared to the tumor control. Furthermore, oral administration of the extract reduced tumor volume and alleviated oxidative stress in tumor tissue. The anticancer effects were associated with overexpression of p53 and Bax and downregulation of cyclin D1 expression, which was attributed to decreased phosphorylated MAPK kinases. Additionally, D. rzedowskii exhibited antibacterial activity against K. pneumoniae isolated from cancer patients. The extract inhibited bacterial growth and reduced the membrane integrity. The study suggests that D. rzedowskii has promising potential as an adjunctive therapy for cancer treatment. Further investigations are needed to explore its combined anticancer efficacy. These results emphasize the value of natural products in developing compounds with potential anticancer activity and support a paradigm shift in cancer management to improve patients' quality of life.

7.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38399474

RESUMO

Owing to the spread of resistance between pathogenic bacteria, searching for novel compounds with antibacterial activity is essential. Here, we investigated the potential antibacterial activity of Greek clover or Trigonella foenum-graecum herb extract on Salmonella typhimurium clinical isolates. The chemical profile of the herb was initially determined using LC-ESI-MS/MS, which explored 36 different compounds. Interestingly, the fenugreek extract possessed antibacterial action in vitro with minimum inhibitory concentrations of 64 to 512 µg/mL. The potential mechanism of action was studied by elucidating the effect of the fenugreek extract on the membrane properties of S. typhimurium bacteria, including the inner and outer membrane permeability and membrane integrity. Remarkably, the fenugreek extract had detrimental effects on the membrane properties in 40-60% of the isolates. Moreover, the in vivo antibacterial action was studied using a gastrointestinal infection model with S. typhimurium bacteria. Interestingly, the fenugreek extract (200 mg/kg) improved the infection outcomes in the tested mice. This was represented by the noteworthy decrease (p < 0.05) in the bacterial count in the small intestine and caecum tissues. The survival rate of the fenugreek-extract-treated mice significantly increased compared to the S. typhimurium-infected group. Additionally, there was an improvement in the histological and immunohistochemical features of tumor necrosis factor-alpha. In addition, using an ELISA and qRT-PCR, there was an improvement in the proinflammatory and oxidative stress markers in the fenugreek-extract-treated group. Consequently, fenugreek extract should be investigated further on other food pathogens.

8.
J Biomol Struct Dyn ; : 1-18, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197579

RESUMO

The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).Communicated by Ramaswamy H. Sarma.

9.
Polymers (Basel) ; 15(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960016

RESUMO

This study aimed at formulating the antiglaucoma agent, Bimatoprost (BMT), into niosomal in situ gel (BMT-ISG) for ocular delivery. Niosomes containing cholesterol/span 60 entrapping BMT were fabricated using a thin-film hydration method. The fabricated niosomes were optimized and characterized for entrapment efficiency (%EE) and size. The optimized BMT-loaded niosomal formulation prepared at a cholesterol/span 60 ratio of 1:2 exhibited the highest entrapment (81.2 ± 1.2%) and a small particle size (167.3 ± 9.1 nm), and they were selected for incorporation into in situ gelling systems (BMT-ISGs) based on Pluronic F127/Pluronic F68. Finally, the in vivo efficiency of the BMT-ISG formulation, in terms of lowering the intraocular pressure (IOP) in normotensive male albino rabbits following ocular administration, was assessed and compared to that of BMT ophthalmic solution. All the formulated BMT-ISGs showed sol-gel transition temperatures ranging from 28.1 °C to 40.5 ± 1.6 °C. In addition, the BMT-ISG formulation sustained in vitro BMT release for up to 24 h. Interestingly, in vivo experiments depicted that topical ocular administration of optimized BMT-ISG formulation elicited a significant decline in IOP, with maximum mean decreases in IOP of 9.7 ± 0.6 mm Hg, compared to BMT aqueous solution (5.8 ± 0.6 mm Hg). Most importantly, no signs of irritation to the rabbit's eye were observed following topical ocular administration of the optimized BMT-ISG formulation. Collectively, our results suggested that niosomal in situ gels might be a feasible delivery vehicle for topical ocular administration of anti-glaucoma agents, particularly those with poor ocular bioavailability.

10.
Infect Genet Evol ; 116: 105526, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977421

RESUMO

Extended Spectrum Beta Lactamases (ESBLs) are the most prevalent enzymes conferring resistance to beta-lactams encoded on plasmids and rarely in chromosomes. This genomic study aims to characterize Escherichia coli to identify antimicrobial resistance genes (ARG), virulence factors, and phylogenetic relationships among ESBL-positive and negative isolates of E. coli obtained from Al-Kharj, Riyadh region, Saudi Arabia. Three clinical isolates from urine and vaginal swabs were obtained and subjected to whole genome sequencing, minimum inhibitory concentration, and antibiotic sensitivity tests. The pathogenicity and ARG were discovered, and the raw genomic sequences were assembled and annotated. Two isolates (E5 and E15) were MDR and ESBLs producers; the sequence type (ST) for E5 was 58, while those for E15 and E21 were 106. Most of the virulence genes were detected as plasmid-mediated; E21 was identified with a hyper-virulent plasmid (pH 2332-166) carrying different virulence factors (TraJ, traT, iss, etsC, hlyF, and iron acquisition associated proteins), plasmids (IncFII, IncFIB, and IncFIA), and insertion sequences (ISEc31). While most of the antimicrobial resistance genes were chromosomally mediated, a rare chromosome insertion of qnrS1 and blaCTX-M-15 with co-occurrence of Tn2 and ISKpn19 was identified in the E5 isolate. The consistent preservation of these genetic elements on bacterial chromosomes and plasmids could enhance the spread of Multidrug-Resistant (MDR) strains across various Enterobacteriaceae Species. This poses a significant threat to the effectiveness of existing antimicrobial treatments.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Feminino , Humanos , Escherichia coli , Filogenia , beta-Lactamases/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética , Proteínas de Escherichia coli/genética , Genômica , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana
11.
Pol J Microbiol ; 72(3): 269-275, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37668434

RESUMO

Human Cytomegalovirus (HCMV) is a leading healthcare problem associated with stillbirth and congenital abnormalities. Determining the seroprevalence and the possible risk factors related to HCMV infections may be a cornerstone in preventing its complications. This cross-sectional study was conducted in Kassala and River Nile States to determine the seroprevalence and risk factors associated with HCMV infection in pregnant women. One hundred eighty-four (n = 184) blood specimens were collected from pregnant women from February 2018 to January 2020. Enzyme-linked immunosorbent assay (ELISA) was used to detect HCMV-specific IgG and IgM antibodies. Socio-demographical characteristics of the women were collected using structured questionnaires. The results showed that HCMV IgG was detected in 170 (92.4%) of the blood specimens, and IgM was detected in 29/93 (31.2%). There was a significant relationship between the history of miscarriage and the presence of IgG and IgM with a p-value = 0.001 and between HCMV IgM and gestational stage (p-value = 0.028). The study found a strikingly high seroprevalence of HCMV infections among pregnant women in the investigated States. This high percentage of illiterate housewives living in rural areas makes it possible to reduce the incidence of HCMV infection in pregnant women by improving their knowledge, attitude, and practice regarding the route of viral transmission, which may reflect in lowering the rate of congenital diseases in their infants.


Assuntos
Infecções por Citomegalovirus , Gestantes , Gravidez , Lactente , Humanos , Feminino , Sudão , Estudos Transversais , Estudos Soroepidemiológicos , Infecções por Citomegalovirus/epidemiologia , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina M
12.
Saudi Pharm J ; 31(9): 101734, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37649675

RESUMO

Cetirizine hydrochloride (CTZ), a second-generation anti-histaminic drug, has been recently explored for its effectiveness in the treatment of alopecia. Niosomes are surfactant-based nanovesicular systems that have promising applications in both topical and transdermal drug delivery. The aim of this study was to design topical CTZ niosomes for management of alopecia. Thin film hydration technique was implemented for the fabrication of CTZ niosomes. The niosomes were examined for vesicle size, surface charge, and entrapment efficiency. The optimized niosomal formulation was incorporated into a hydrogel base (HPMC) and explored for physical characteristics, ex vivo permeation, and in vivo dermato-kinetic study. The optimized CTZ-loaded niosomal formulation showed an average size of 403.4 ± 15.6 nm, zeta potential of - 12.9 ± 1.7 mV, and entrapment efficiency percentage of 52.8 ± 1.9%. Compared to plain drug solution, entrapment of CTZ within niosomes significantly prolonged in vitro drug release up to 12 h. Most importantly, ex-vivo skin deposition studies and in vivo dermato-kinetic studies verified superior skin deposition/retention of CTZ from CTZ-loaded niosomal gels, compared to plain CTZ gel. CTZ-loaded niosomal gel permitted higher drug deposition percentage (19.2 ± 1.9%) and skin retention (AUC0-10h 1124.5 ± 87.9 µg/mL.h) of CTZ, compared to 7.52 ± 0.7% and 646.2 ± 44.6 µg/mL.h for plain CTZ gel, respectively. Collectively, niosomes might represent a promising carrier for the cutaneous delivery of cetirizine for the topical management of alopecia.

13.
Infect Drug Resist ; 16: 4845-4856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520449

RESUMO

Background: Understanding COVID-19's onset and clinical effects requires knowing host immune responses. Objective: To investigate the presence of IgM, IgG, and cytokine levels (IL-2 and IL-6) in individuals with COVID-19 who have had their diagnosis confirmed by PCR. Methods: This cross-sectional research included 70 adult ICU patients from King Abdullah Hospital in Bisha, Saudi Arabia. Subjects gave two blood samples. After hospital release, only 21 patients provided the second sample. Each patient provided a sample upon admission. Quantitative ELISAs evaluated IL-2, IL-6, and SARS-CoV-2-specific IgM and IgG antibodies. Results: All patients were critically ill and unvaccinated against COVID-19. 46 (65.7%) of the patients were male, and their age range was 33-98 years (with a mean age of 66.5); 24.3%) were 51-61 years old. IgG was positive in all patients, although IgM predominated in 57/70 (81.4%) (6-1200 IU/mL). Total data analysis yielded these results. IL-6 was calculated at 10-1900 ng/mL, whereas IL-2 was 4-280. Discharged hospital patients had a statistically significant increase in IgM and IgG (P = 0.01, 0.004) but a statistically insignificant decline in IL-6 and IL-2 (P = 0.761, 0.071). Low IgM levels increased hospital stays. The study found lengthier hospital stays with higher IgG levels. Conclusion: The identification of IgM and IgG antibodies, greater IL-6 levels, and lower IL-2 levels can help diagnose and monitor COVID-19 infection.

14.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513913

RESUMO

Glaucoma is a progressive optic neuropathy characterized by a rise in the intraocular pressure (IOP) leading to optic nerve damage. Bimatoprost is a prostaglandin analogue used to reduce the elevated IOP in patients with glaucoma. The currently available dosage forms for Bimatoprost suffer from relatively low ocular bioavailability. The objective of this study was to fabricate and optimize solid lipid nanoparticles (SLNs) containing Bimatoprost for ocular administration for the management of glaucoma. Bimatoprost-loaded SLNs were fabricated by solvent evaporation/ultrasonication technique. Glyceryl Monostearate (GMS) was adopted as solid lipid and poloxamer 407 as surfactant. Optimization of SLNs was conducted by central composite design. The optimized formulation was assessed for average particle size, entrapment efficiency (%), zeta potential, surface morphology, drug release study, sterility test, isotonicity test, Hen's egg test-chorioallantoic membrane (HET-CAM) test and histopathology studies. The optimized Bimatoprost-loaded SLNs formulation had an average size of 183.3 ± 13.3 nm, zeta potential of -9.96 ± 1.2 mV, and encapsulation efficiency percentage of 71.8 ± 1.1%. Transmission electron microscopy (TEM) study revealed the nearly smooth surface of formulated particles with a nano-scale size range. In addition, SLNs significantly sustained Bimatoprost release for up to 12 h, compared to free drug (p < 005). Most importantly, HET-CAM test nullified the irritancy of the formulation was verified its tolerability upon ocular use, as manifested by a significant reduction in mean irritation score, compared to positive control (1% sodium dodecyl sulfate; p < 0.001). Histopathology study inferred the absence of any signs of cornea tissue damage upon treatment with Bimatoprost optimized formulation. Collectively, it was concluded that SLNs might represent a viable vehicle for enhancing the corneal permeation and ocular bioavailability of Bimatoprost for the management of glaucoma.

15.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-37259460

RESUMO

Diseases and infections of the respiratory tract are common global causes of morbidity and mortality. Our study attempts to elucidate a novel remedy for respiratory ailments, in addition to identifying and quantifying the metabolites of Saussurea costus root extract (SCRE) using HPLC. Then, in vitro antiviral and in vivo lung protective effects were elucidated. The in vitro antiviral potential of SCRE was analyzed via plaque assay against the low pathogenic human coronavirus (HCoV-229E) and human influenza virus (H1N1). The value of the half maximal inhibitory concentrations (IC50) of SCRE against HCoV-229E and H1N1 influenza virus were 23.21 ± 1.1 and 47.6 ± 2.3 µg/mL, respectively. SCRE showed a histological improvement, namely a decrease in inducible nitric oxide synthase (iNOS) and caspase-3 immunoexpression in in vivo cyclophosphamide (CP)-induced acute lung injury (ALI). Moreover, there was a considerable decline in microRNA-let-7a gene expression and a significant rise in heme oxygenase-1 (HO-1) gene expression, with a marked decrease in the malondialdehyde (MDA) level. Molecular docking studies revealed that the major constituents of SCRE have a good affinity for caspase-3, HO-1, and iNOS proteins. In conclusion, a traditional plant SCRE could be a promising source of novel therapeutic agents for treating and protecting respiratory tract diseases. More future investigations should be carried out to reveal its efficacy clinically.

16.
Pharmaceutics ; 15(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37376202

RESUMO

This study demonstrates high drug-loading of novel pyridine derivatives (S1-S4) in lipid- and polymer-based core-shell nanocapsules (LPNCs) for boosting the anticancer efficiency and alleviating toxicity of these novel pyridine derivatives. The nanocapsules were fabricated using a nanoprecipitation technique and characterized for particle size, surface morphology, and entrapment efficiency. The prepared nanocapsules exhibited a particle size ranging from 185.0 ± 17.4 to 223.0 ± 15.3 nm and a drug entrapment of >90%. The microscopic evaluation demonstrated spherical-shaped nanocapsules with distinct core-shell structures. The in vitro release study depicted a biphasic and sustained release pattern of test compounds from the nanocapsules. In addition, it was obvious from the cytotoxicity studies that the nanocapsules showed superior cytotoxicity against both MCF-7 and A549 cancer cell lines, as manifested by a significant decrease in the IC50 value compared to free test compounds. The in vivo antitumor efficacy of the optimized nanocapsule formulation (S4-loaded LPNCs) was investigated in an Ehrlich ascites carcinoma (EAC) solid tumor-bearing mice model. Interestingly, the entrapment of the test compound (S4) within LPNCs remarkably triggered superior tumor growth inhibition when compared with either free S4 or the standard anticancer drug 5-fluorouracil. Such enhanced in vivo antitumor activity was accompanied by a remarkable increase in animal life span. Furthermore, the S4-loaded LPNC formulation was tolerated well by treated animals, as evidenced by the absence of any signs of acute toxicity or alterations in biochemical markers of liver and kidney functions. Collectively, our findings clearly underscore the therapeutic potential of S4-loaded LPNCs over free S4 in conquering EAC solid tumors, presumably via granting efficient delivery of adequate concentrations of the entrapped drug to the target site.

17.
Expert Rev Anti Infect Ther ; : 1-11, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37387417

RESUMO

OBJECTIVES: Evaluation of the antifungal properties of Tamarix nilotica fractions against Candida albicans clinical isolates. METHODS: The in vitro antifungal potential was evaluated by agar well diffusion and broth microdilution methods. The antibiofilm potential was assessed by crystal violet, scanning electron microscopy (SEM), and qRT-PCR. The in vivo antifungal activity was evaluated by determining the burden in the lung tissues of infected mice, histopathological, immunohistochemical studies, and ELISA. RESULTS: Both the dichloromethane (DCM) and ethyl acetate (EtOAc) fractions had minimum inhibitory concentration (MIC) values of 64-256 and 128-1024 µg/mL, respectively. SEM examination showed that the DCM fraction decreased the biofilm formation capacity of the treated isolates. A significant decline in biofilm gene expression was observed in 33.33% of the DCM-treated isolates. A considerable decline in the CFU/g lung count in infected mice was observed, and histopathological examinations revealed that the DCM fraction maintained the lung tissue architecture. Immunohistochemical investigations indicated that the DCM fraction significantly (p < 0.05) decreased the expression of pro-inflammatory and inflammatory cytokines (TNF-α, NF-kB, COX-2, IL-6, and IL-1ß) in the immunostained lung sections. The phytochemical profiling of DCM and EtOAc fractions was performed using Liquid chromatography-mass spectrometry (LC-ESI-MS/MS). CONCLUSION: T. nilotica DCM fraction could be a significant source of natural products with antifungal activity against C. albicans infections.

18.
Saudi J Biol Sci ; 30(6): 103653, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37223640

RESUMO

Food Microbial contamination is one of the most serious problems. A large percentage of food-borne illnesses are caused by food-borne pathogens, and diarrheal agents comprise more than half of the overall prevalence of food-borne illnesses in the globe, and more commonly in developing countries. This study aimed to identify the most-common foodborne organisms from foods in Khartoum state by PCR. A total of 207 food samples (raw milk, fresh cheese, yogurt, fish, sausage, mortadella, and eggs) were collected. DNA was extracted from food samples by guanidine chloride protocol, and then species-specific primers were used to identify Escherichia coli O157: H7, Listeria monocytogenes, Salmonella spp., Vibrio cholerae, V. parahaemolyticus, and Staphylococcus aureus. Out of 207 samples, five (2.41%) were positive for L. monocytogenes, one (0.48%) was positive for S. aureus, and one (0.48%) was positive for both Vibrio cholerae and Vibrio parahaemolyticus. From 91 fresh cheese samples, 2 (2.19%) were positive for L. monocytogenes, and one (1.1%) sample was positive for two different foodborne pathogens (V. cholerae and V. parahaemolyticus). Out of 43 Cow's milk samples, three (7%) samples were positive for L. monocytogenes, and out of 4 sausage samples, one (25 %) was positive for S. aureus. Our study revealed the presence of L. monocytogenes and V. cholera in raw milk and fresh cheese samples. Their presence is considered a potential problem and needs intensive hygiene efforts and standard safety measures before, during, and after food processing operations.

19.
Artif Cells Nanomed Biotechnol ; 51(1): 297-308, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37224186

RESUMO

Emergent records propose that Aspergillus niger endophytic fungus is a vital source for various bioactive molecules possessing many biological properties. The current study was designed to inspect the antibacterial and anti-Toxoplasma potentials of Ficus retusa-derived endophytic fungi. After isolation and identification (using 18S rRNA gene sequencing) of A. niger endophytic fungus, LC/MS was utilized for identification and authentication of the chemical profile of the A. niger endophyte extract. Then, the fungal extract was assessed for its antibacterial and antibiofilm activities against Klebsiella pneumoniae clinical isolates. Additionally, its efficacy against Toxoplasma gondii was elucidated in vivo. The fungal extract displayed antibacterial activity against K. pneumoniae isolates with minimum inhibitory concentration values of 64-512 µg/mL. It also possessed a membrane potential dissipating effect using flow cytometry. Moreover, it formed distorted cells with rough surfaces and deformed shapes using a scanning electron microscope (SEM). Regarding its antibiofilm activity, it resulted in a dysregulation of the genes encoding biofilm formation (fimH, mrkA and mrkD) using qRT-PCR in nine K. pneumoniae isolates. The in vivo anti-Toxoplasma potential was demonstrated by decreasing the mortality rate of mice and reducing the tachyzoites' count in the peritoneal fluids and liver impression smears of mice. In addition, the deformities of the parasite decreased, as revealed by SEM and the inflammation in tissues diminished. Thus, A. niger endophytic fungi could be a valuable source of antibacterial and anti-Toxoplasma compounds.


Assuntos
Asteraceae , Ficus , Toxoplasma , Aspergillus niger , Antibacterianos/farmacologia , Extratos Vegetais
20.
Healthcare (Basel) ; 11(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37046952

RESUMO

The COVID-19 pandemic had a profound impact on global health, economies, and social systems. The crucial factor that determines the success of COVID-19 treatments is preventing the need for mechanical ventilation and intensive care admission. In the context of COVID-19, several treatments have been found to play a role in the disease's progression and severity. Interleukins (ILs) have been identified as key mediators of the cytokine storm that can occur in severe cases of COVID-19, leading to respiratory failure and other complications. For instance, IL-1 antagonist (anakinra) and IL-6 antagonist (tocilizumab) are supposed to be promising treatments as well as cortisones for COVID-19. This prospective study aims to evaluate the effectiveness of anakinra or tocilizumab in addition to cortisone in preventing the progression of mild to moderate COVID-19 cases to severe intensive care admission. Biochemical and hematological parameters, such as D-dimer, ferritin, LDH, CRP, and white blood cells (WBCs), were measured after treatment with either anakinra or tocilizumab in addition to cortisone or cortisone alone. The study also recorded the number of deaths and patients admitted to intensive care. The results indicate that anakinra significantly improved outcomes and decreased the number of intensive care admissions compared to tocilizumab or cortisone alone. Therefore, anakinra may play a vital role in controlling the progression of COVID-19, and its use in mild to moderate cases may prevent the worsening of the disease to severe stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...